Holomorphic Extension on Product Lipschitz Surfaces in Two Complex Variables

نویسندگان

  • JAROD HART
  • ALESSANDRO MONGUZZI
چکیده

In this work we prove a new Lp holomorphic extension result for functions defined on product Lipschitz surfaces with small Lipschitz constants in two complex variables. We define biparameter and partial Cauchy integral operators that play the role of boundary values for holomorphic functions on product Lipschitz domain. In the spirit of the application of David-Journé-Semmes [DJS85] and Christ’s [Chr90] T b theorem to the Cauchy integral operator, we prove a biparameter T b theorem and apply it to prove Lp space bounds for the biparameter Cauchy integral operator. We also prove some new biparameter Littlewood-Paley-Stein estimates and use them to prove the biparameter T b theorem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complex geometry: Its brief history and its future Personal perspective

There are surprisingly rich properties of these holomorphic functions. The possibility of holomorphic continuation of holomorphic functions forces us to consider multi-valued holomorphic functions. The concept of Riemann Surfaces was introduced to understand such phenomena. The ideas of branch cuts and branch points immediately relate topology of these surfaces to complex variables. The possibi...

متن کامل

On the character space of vector-valued Lipschitz algebras

We show that the character space of the vector-valued Lipschitz algebra $Lip^{alpha}(X, E)$ of order $alpha$ is homeomorphic to the cartesian product $Xtimes M_E$ in the product topology, where $X$ is a compact metric space and $E$ is a unital commutative Banach algebra. We also characterize the form of each character on $Lip^{alpha}(X, E)$. By appealing to the injective tensor product, we the...

متن کامل

A Note on Random Holomorphic Iteration in Convex Domains

We introduce a geometric condition of Bloch type which guarantees that a subset of a bounded convex domain in several complex variables is degenerate with respect to every iterated function system. Furthermore we discuss the relations of such a Bloch type condition with the analogous hyperbolic Lipschitz condition.

متن کامل

Quasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions

We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact  (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...

متن کامل

Para-Kahler tangent bundles of constant para-holomorphic sectional curvature

We characterize the natural diagonal almost product (locally product) structures on the tangent bundle of a Riemannian manifold. We obtain the conditions under which the tangent bundle endowed with the determined structure and with a metric of natural diagonal lift type is a Riemannian almost product (locally product) manifold, or an (almost) para-Hermitian manifold. We find the natural diagona...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014